Evidence of MyomiR network regulation of -myosin heavy chain gene expression during skeletal muscle atrophy
نویسندگان
چکیده
McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE. Evidence of MyomiR network regulation of -myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics 39: 219 –226, 2009. First published August 18, 2009; doi:10.1152/physiolgenomics.00042.2009.—There is a growing recognition that noncoding RNAs (ncRNA) play an important role in the regulation of gene expression. A class of small (19–22 nt) ncRNAs, known as microRNAs (miRs), have received a great deal of attention lately because of their ability to repress gene expression through a unique posttranscriptional 3 -untranslated region (UTR) mechanism. The objectives of the current study were to identify miRs expressed in the rat soleus muscle and determine if their expression was changed in response to hindlimb suspension. Comprehensive profiling revealed 151 miRs were expressed in the soleus muscle and expression of 18 miRs were significantly (P 0.01) changed after 2 and/or 7 days of hindlimb suspension. The significant decrease (16%) in expression of muscle-specific miR-499 in response to hindlimb suspension was confirmed by RT-PCR and suggested activation of the recently proposed miR encoded by myosin gene (MyomiR) network during atrophy. Further analysis of soleus muscle subjected to hindlimb suspension for 28 days provided evidence consistent with MyomiR network repression of -myosin heavy chain gene ( -MHC) expression. The significant downregulation of network components miR-499 and miR-208b by 40 and 60%, respectively, was associated with increased expression of Sox6 (2.2-fold) and Pur (23%), predicted target genes of miR-499 and known repressors of -MHC expression. A Sox6 3 -UTR reporter gene confirmed Sox6 is a target gene of miR-499. These results further expand the role of miRs in adult skeletal muscle and are consistent with a model in which the MyomiR network regulates slow myosin expression during muscle atrophy.
منابع مشابه
Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy.
There is a growing recognition that noncoding RNAs (ncRNA) play an important role in the regulation of gene expression. A class of small (19-22 nt) ncRNAs, known as microRNAs (miRs), have received a great deal of attention lately because of their ability to repress gene expression through a unique posttranscriptional 3'-untranslated region (UTR) mechanism. The objectives of the current study we...
متن کاملGlucocorticoid-induced alterations in titin, nebulin, myosin heavy chain isoform content and viscoelastic properties of rat skeletal muscle
Viscoelastic properties of skeletal muscle are associated with a complex network of cytoskeletal proteins where titin and nebulin play a substantial role. The need for evaluation of muscle viscoelastic properties is widely accepted in clinical use to evaluate the effect of treatment or progression of muscle pathology (atrophy). We tested the hypothesis that the viscoelastic properties (elastici...
متن کاملEffects of Nandrolone in the Counteraction of Skeletal Muscle Atrophy in a Mouse Model of Muscle Disuse: Molecular Biology and Functional Evaluation
Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol) muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND), an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU). Mice were pre-treated for 2-weeks before...
متن کاملاثر حفاظت قلبی فعالیت بدنی اختیاری بر تغییرات بیان ژن زنجیره سنگین میوزین قلبی ناشی از القاء دوکسوربیسین در رات های مدل سالمندی
Background & Aims: Despite confirmed effectiveness of forced exercise training in reducing doxorubicin-induced cardiotoxicity, the role of voluntary physical activity in reducing doxorubicin-induced cardiotoxicity, especially in the elderly, still has not been investigated properly. The aim of this study was to investigate the protective effect of cardiac protection caused by voluntary phy...
متن کاملMechanisms underlying skeletal muscle weakness in human heart failure: alterations in single fiber myosin protein content and function.
BACKGROUND Patients with chronic heart failure (HF) frequently experience skeletal muscle weakness that limits physical function. The mechanisms underlying muscle weakness, however, have not been clearly defined. METHODS AND RESULTS This study examined the hypothesis that HF promotes a loss of myosin protein from single skeletal muscle fibers, which in turn reduces contractile performance. Te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009